48,098 research outputs found

    Constrained Deep Transfer Feature Learning and its Applications

    Full text link
    Feature learning with deep models has achieved impressive results for both data representation and classification for various vision tasks. Deep feature learning, however, typically requires a large amount of training data, which may not be feasible for some application domains. Transfer learning can be one of the approaches to alleviate this problem by transferring data from data-rich source domain to data-scarce target domain. Existing transfer learning methods typically perform one-shot transfer learning and often ignore the specific properties that the transferred data must satisfy. To address these issues, we introduce a constrained deep transfer feature learning method to perform simultaneous transfer learning and feature learning by performing transfer learning in a progressively improving feature space iteratively in order to better narrow the gap between the target domain and the source domain for effective transfer of the data from the source domain to target domain. Furthermore, we propose to exploit the target domain knowledge and incorporate such prior knowledge as a constraint during transfer learning to ensure that the transferred data satisfies certain properties of the target domain. To demonstrate the effectiveness of the proposed constrained deep transfer feature learning method, we apply it to thermal feature learning for eye detection by transferring from the visible domain. We also applied the proposed method for cross-view facial expression recognition as a second application. The experimental results demonstrate the effectiveness of the proposed method for both applications.Comment: International Conference on Computer Vision and Pattern Recognition, 201

    Generation of Multi-Color Attosecond X-Ray Radiation Through Modulation Compression

    Full text link
    In this paper, we propose a scheme to generate tunable multi-color attosecond coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulators, a laser chirper and two bunch compressors to generate a multi-spike prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. Such an electron beam transports through a series of undulator radiators and bunch compressors to generate multi-color coherent X-ray radiation. As an illustration, we present an example to generate two attosecond pulses with 2.22.2 nm and 33 nm coherent X-ray radiation wavelength and more than 200200 MW peak power using a 3030 Ampere 200200 nm laser seeded electron beam

    Constrained Joint Cascade Regression Framework for Simultaneous Facial Action Unit Recognition and Facial Landmark Detection

    Full text link
    Cascade regression framework has been shown to be effective for facial landmark detection. It starts from an initial face shape and gradually predicts the face shape update from the local appearance features to generate the facial landmark locations in the next iteration until convergence. In this paper, we improve upon the cascade regression framework and propose the Constrained Joint Cascade Regression Framework (CJCRF) for simultaneous facial action unit recognition and facial landmark detection, which are two related face analysis tasks, but are seldomly exploited together. In particular, we first learn the relationships among facial action units and face shapes as a constraint. Then, in the proposed constrained joint cascade regression framework, with the help from the constraint, we iteratively update the facial landmark locations and the action unit activation probabilities until convergence. Experimental results demonstrate that the intertwined relationships of facial action units and face shapes boost the performances of both facial action unit recognition and facial landmark detection. The experimental results also demonstrate the effectiveness of the proposed method comparing to the state-of-the-art works.Comment: International Conference on Computer Vision and Pattern Recognition, 201

    Denoising Deep Neural Networks Based Voice Activity Detection

    Full text link
    Recently, the deep-belief-networks (DBN) based voice activity detection (VAD) has been proposed. It is powerful in fusing the advantages of multiple features, and achieves the state-of-the-art performance. However, the deep layers of the DBN-based VAD do not show an apparent superiority to the shallower layers. In this paper, we propose a denoising-deep-neural-network (DDNN) based VAD to address the aforementioned problem. Specifically, we pre-train a deep neural network in a special unsupervised denoising greedy layer-wise mode, and then fine-tune the whole network in a supervised way by the common back-propagation algorithm. In the pre-training phase, we take the noisy speech signals as the visible layer and try to extract a new feature that minimizes the reconstruction cross-entropy loss between the noisy speech signals and its corresponding clean speech signals. Experimental results show that the proposed DDNN-based VAD not only outperforms the DBN-based VAD but also shows an apparent performance improvement of the deep layers over shallower layers.Comment: This paper has been accepted by IEEE ICASSP-2013, and will be published online after May, 201
    • …
    corecore